Performance Analysis of Hopfield Model of Neural Network with Evolutionary Approach for Pattern Recalling

نویسنده

  • T P Singh
چکیده

ABSTRACT In the present paper, an effort has been made to compare and analyze the performance for pattern recalling with conventional hebbian learning rule and with evolutionary algorithm in Hopfield Model of feedback Neural Networks. A set of ten objects has been considered as the pattern set. In the Hopfield type of neural networks of associative memory, the weighted code of input patterns provides an auto-associative function in the network. The storing of the objects has been performed using Hebbian rule and recalling of these stored patterns on presentation of prototype input patterns has been made using both conventional hebbian rule and evolutionary algorithm. Exploration of the population generation techniques (mutation and elitism), crossover and setting up of proper fitness evaluation functions to generate the new population of the weight matrices from the optimal weight matrix of the stored patterns has been done. The simulated results show that the genetic algorithm is the best searching technique to recall the approximate input patterns.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Hopfield Associative Memory with Combination of MC Adaptation Rule and an Evolutionary Algorithm

The combination of evolutionary algorithms and ANN has been a recent interest in the field of research. Hopfield model is a type of recurrent neural network which has been widely studied for the purpose of associative memories. In the present work, this Hopfield Model of feedback neural networks has been studied with Monte Carlo adaptation learning rule and one evolutionary searching algorithm ...

متن کامل

Recalling of Images using Hopfield Neural Network Model

In the present paper, an effort has been made for storing and recalling images with Hopfield Neural Network Model of auto-associative memory. Images are stored by calculating a corresponding weight matrix. Thereafter, starting from an arbitrary configuration, the memory will settle on exactly that stored image, which is nearest to the starting configuration in terms of Hamming distance. Thus gi...

متن کامل

Verification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation

Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...

متن کامل

Tolerance of Pattern Storage Network for Storage and Recalling of Compressed Image using SOM

In this paper we are studying the tolerance of Hopfield neural network for storage and recalling of fingerprint images. The feature extraction of these images is performed with FFT, DWT and SOM. These feature vectors are stored as associative memory in Hopfield Neural Network with Hebbian learning and Pseudoinverse learning rules. The objective of this study is to determine the optimal weight m...

متن کامل

Pattern-recalling processes in quantum Hopfield networks far from saturation

Abstract. As a mathematical model of associative memories, the Hopfield model was now well-established and a lot of studies to reveal the pattern-recalling process have been done from various different approaches. As well-known, a single neuron is itself an uncertain, noisy unit with a finite unnegligible error in the input-output relation. To model the situation artificially, a kind of ‘heat b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010